Calculator Usage Guide

This guide provides examples and explanations for using the calculator with its supported operators and functions.

Arithmetic Operators

The calculator supports the following arithmetic operators:

  • + (Addition)
  • - (Subtraction)
  • * (Multiplication)
  • / (Division)
  • % (Remainder/Modulo)
  • ^ (Exponentiation)

Examples:

2 + 3

Result: 5

10 - 5

Result: 5

4 * 6

Result: 24

15 / 3

Result: 5

17 % 5 Calculate the remainder when 17 is divided by 2.

Result: 2

2 ^ 3

Result: 8

4 ^ 0.5

Result: 2

-2 + 5

Result: 3

Combining Arithmetic Operations:

2 * (3 + 4) / 2

Result: 7

10 % 3 + 2 ^ 2 - 1

Result: 4

Comparison Operators

The calculator supports the following comparison operators:

  • == (Equal to)
  • != (Not equal to)
  • > (Greater than)
  • < (Less than)
  • >= (Greater than or equal to)
  • <= (Less than or equal to)

Note: These operators return True or False.

Examples:

5 == 5

Result: True

5 != 5

Result: False

10 > 5

Result: True

3 < 7

Result: True

8 >= 8

Result: True

2 <= 5

Result: True

Combining Comparison and Arithmetic Operations:

5^(1/7) > 3^(1/5)

Result: True

abs(-10) / 2 == 5

Result: True

(2 + 3) * 2 > 8

Result: True

Functions

The calculator supports a variety of functions, as described below.

Greatest Common Divisor (GCD) / Highest Common Factor (HCF)

hcf(...) or gcd(...): Calculates the greatest common divisor of multiple numbers.

hcf(12, 18, 24)

Result: 6

gcd(12, 18)

Result: 6

Least Common Multiple (LCM)

lcm(...): Calculates the least common multiple of multiple numbers.

lcm(4, 6, 8)

Result: 24

Prime Factorization

factors(n): Finds the prime factors of a number n. Returns a list of the prime factors.

factors(24)

Result: 2 * 2 * 2 * 3

factors(1)

Result: 1

Square Root

sqrt(x): Calculates the square root of x.

sqrt(9)

Result: 3

Absolute Value

abs(x): Calculates the absolute value of x.

abs(-5)

Result: 5

Rounding Functions

floor(x): Rounds x down to the nearest integer.

ceil(x): Rounds x up to the nearest integer.

round(x, d): Rounds x to d decimal places.

floor(3.7)

Result: 3

ceil(3.2)

Result: 4

round(3.14159, 2)

Result: 3.14

Combining Functions and Previous Operators:

sqrt(abs(-16)) + 3 * 2

Result: 10

round(3.14159, 2) > 3.14

Result: False

hcf(12, 18) + sqrt(9)

Result: 9

Constants

pi(): Returns the value of π (approximately 3.14159).

pi()

Result: 3.14159...

Combining Constants with other features

round(pi(), 2)

Result: 3.14

pi() > 3

Result: True

Exponential and Logarithmic Functions

exp(x): Calculates ex.

log(x): Calculates the natural logarithm (base e) of x.

log10(x): Calculates the base-10 logarithm of x.

exp(2)

Result: 7.3890560989307

log(exp(1))

Result: 1

log10(100)

Result: 2

Combining Exponential and Logarithmic functions with previous features

round(log(exp(2)), 2)

Result: 2

exp(1) > 2

Result: True

sqrt(exp(1)) + log10(100)

Result: 3.6487212707001

Trigonometric Functions

These functions operate on angles in radians:

  • sin(x): Sine of x
  • cos(x): Cosine of x
  • tan(x): Tangent of x
  • asin(x): Arcsine (inverse sine) of x
  • acos(x): Arccosine (inverse cosine) of x
  • atan(x): Arctangent (inverse tangent) of x
  • atan2(y, x): Arctangent of y/x, considering the quadrant

sin(pi()/2)

Result: 1

cos(0)

Result: 1

tan(pi()/4)

Result: 1

asin(1)

Result: 1.5707963267949

acos(1)

Result: 0

atan(1)

Result: 0.78539816339745

atan2(1,0)

Result: 1.5707963267949

atan2(0,1)

Result: 0

Combining Trigonometric Functions with Previous Features:

round(sin(pi()/4), 2)

Result: 0.71

sin(pi()/2) == 1

Result: True

sqrt(cos(0)) + log(exp(1))

Result: 2

factors(round(asin(1), 0))

Result: 2

Hyperbolic Functions

  • sinh(x): Hyperbolic sine of x
  • cosh(x): Hyperbolic cosine of x
  • tanh(x): Hyperbolic tangent of x
  • asinh(x): Inverse hyperbolic sine
  • acosh(x): Inverse hyperbolic cosine
  • atanh(x): Inverse hyperbolic tangent

sinh(1)

Result: 1.1752011936438

cosh(1)

Result: 1.5430806348152

tanh(1)

Result: 0.76159415595576

asinh(1)

Result: 0.88137358701954

acosh(2)

Result: 1.3169578969248

atanh(0.5)

Result: 0.54930614433405

Combining Hyperbolic Functions with Previous Features:

round(sinh(1), 2)

Result: 1.18

cosh(1) > 1.5

Result: True

sqrt(round(tanh(1), 1)) + log(2)

Result: 1.5875743715599

round(acosh(2) * sin(pi()/6), 2)

Result: 0.66

Rational Numbers

rational(a, b): Simplifies the fraction a/b.

to_rational(x, y=1000): Converts x to a rational number with a maximum denominator y. Defaults to a maximum denominator of 1000 if y isn't specified.

rational(12, 18)

Result: 2/3

to_rational(0.333)

Result: 333/1000

to_rational(0.333, 10)

Result: 1/3

to_rational(0.143, 100)

Result: 1/7

Combining Rational Numbers with Previous Features:

to_rational(0.5) == rational(1, 2)

Result: True

Summation

Σ(start, end, term) or sum(start, end, term): Calculates the summation of a term from start to end, using i as the variable. The maximum range is 100,000.

Σ(1, 5, i^2)

Result: 55

Note: 1 + 4 + 9 + 16 + 25 = 55

sum(1, 5, i*2)

Result: 30

Note: 2 + 4 + 6 + 8 + 10) = 30

sum(1, 3, 1/i)

Result: 1.8333333333333

sum(1, 10, sin(i/10))

Result: 5.0138809809837

Combining Summation with Previous Features

round(sum(1, 5, i^2 / 10), 2)

Result: 5.5

sum(1, 3, i) > 5

Result: True

Sum of Primes

sum_prime(a, b): Returns the sum of all prime numbers starting from the a-th prime to the b-th prime. The values of a and b cannot exceed 10,000.

sum_prime(1, 5)

Result: 28

Note: 2 + 3 + 5 + 7 + 11) = 28

sum_prime(3, 7)

Result: 53

Note: 5 + 7 + 11 + 13 + 17 = 53

Combining Sum of Primes with Previous Features:

sum_prime(1, 3) + sum_prime(4, 6)

Result: 41

round(sum_prime(1, 5)/5, 2)

Result: 5.6

factors(sum_prime(1, 3))

Result: 2 * 5

sum_prime(1, 2) > 4 as (2 + 3) > 5

Result: True

Error Handling

The calculator may return an error if you enter an invalid expression. For example:

sqrt(-1)

Result: NAN

log(0)

Result: -INF

log(-1)

Result: NAN

1 / 0

Result: Calculation Error: Syntax Error: Division by zero

sum(1, 100002, i)

Result: Summation Error: The range is too large. Maximum allowed range is 100,000.

Important Notes

  • Angles for trigonometric functions are expected to be in radians.
  • The summation function has a maximum range to prevent excessive computation.
  • Division by zero will result in an error.
  • Logarithms of negative numbers will result in NAN (Not a number).
  • Input values for functions like sqrt() and log() must be within their valid domains.

Copyright © 2021-2025 XpertEdu.in, All Rights Reserved.

Disclaimer: Content on XpertEdu.in is generated by AI and provided solely for educational and informational purposes. It may contain errors or omissions, and users must verify critical information from reliable sources before relying on it. Code outputs are for learning and demonstration only and may not be secure or error-free. XpertEdu.in, Patodia Infotech Pvt. Ltd., and Akshaya Edutech LLP are not liable for any academic, technical, or consequential outcomes from its use. Use of this site implies acceptance of these terms, which may be updated periodically.